KAIST, 음향 AI 챌린지서 1위…음원 왜곡비 "세계 최고" 달성

과학입력 :2025-07-11 08:41:11    수정:

‘음향 분리 및 분류 기술’은 드론, 공장 배관, 국경 감시 시스템 등에서 이상 음향을 조기에 탐지하거나, AR/VR 콘텐츠 제작 시 공간 음향(Spatial Audio)을 음원별로 분리해 편집할 수 있도록 하는 차세대 인공지능(AI) 핵심 기술이다.

KAIST(총장 이광형)는 전기및전자공학부 최정우 교수 연구팀이 음향 탐지 및 분석 국제 대회인 ‘IEEE DCASE 챌린지 2025’에서 ‘공간 의미 기반 음향 장면 분할’ 분야 우승을 차지했다고 11일 밝혔다.

연구팀은 이 대회 처음 참가, 전 세계 86개 참가팀과 총 6개 분야에서 경쟁했다.

KAIST가 음향AI챌린지 음향 장면 분할 부문서 우승했다. 왼쪽부터 권영후 석박사통합과정, 김도환 석사과정, 최정우 교수, 이동헌 박사.

연구팀은 ‘공간 의미 기반 음향 장면 분할’의 ‘태스크(Task) 4’분야에 참가했다. 이 분야는 음원이 혼합된 다채널 신호 공간 정보를 분석해 개별 소리를 분리하고 18종으로의 분류를 수행하는 기술이다.

오는 10월, 바르셀로나에서 열리는 'DCASE' 워크숍에서 이 기술을 공개한다.

연구팀 이동헌 박사는 올해 초 트랜스포머(Transformer)와 맘바(Mamba) 아키텍처를 결합한 세계 최고 성능의 음원 분리 인공지능을 개발했다. 챌린지 기간 동안 권영후 연구원을 중심으로 1차로 분리된 음원 파형과 종류를 단서로 다시 음원 분리와 분류를 수행하는‘단계적 추론 방식’의 AI 모델을 완성했다.

이 때문에 ‘음원의 신호대 왜곡비 향상도(CA-SDRi)’에서 참가팀 중 유일하게 두 자릿수 대 성능(11dB)을 나타냈다.

김홍일 방통위원장

관련기사